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A Modified Smoothed Particle
Hydrodynamics Scheme
to Model the Stationary and
Moving Boundary Problems
for Newtonian Fluid Flows
A robust modified weakly compressible smoothed particle hydrodynamics (WCSPH)
method based on a predictive corrective scheme is introduced to model the fluid flows
engaged with stationary and moving boundary. In this paper, this model is explained and
practically verified in three distinct laminar incompressible flow cases; the first case
involves the lid driven cavity flow for two Reynolds numbers 400 and 1000. The second
case is a flow generated by a moving block in the initially stationary fluid. The third case
is flow around the stationary and transversely oscillating circular cylinder confined in a
channel. These results in comparison with the standard benchmarks also confirm the
good accuracy of the present solution algorithm. [DOI: 10.1115/1.4028643]

1 Introduction

Smoothed particle hydrodynamics (SPH) method was first pro-
posed for astrophysical applications by Lucy [1] and Gingold and
Monaghan [2]. It was gradually extended to model a wide range
of engineering applications including elasticity [3], multiphase
flows [4], and blood simulation [5]. The SPH method has also
widely been used to model the incompressible flows using an
appropriate equation of state which relates the variations of the
pressure to the variations of the density [6,7]. This approach is
known as “WCSPH.” Another approach entitled “incompressible
smoothed particle hydrodynamics (ISPH)” applies a two-step pro-
jection method which first calculates the predicted velocity and
then corrects the predicted one by the pressure obtained by solv-
ing the Poisson equation. The early works, which used the latter
method, are done by Cummins and Rudman [8] and Shao and Lo
[9]. In this method, the pressure equation is solved in the same
way offered by Koshizuka and Oka [10] for moving particle semi-
implicit method. Each of the above methods has their own advan-
tages and disadvantages; although the WCSPH is implemented
easily, Lee et al. [11] showed that the standard WCSPH has wide
pressure fluctuations. They reported that ISPH yields much more
reliable results than standard WCSPH; velocity and pressure
fields, in particular, are smoother in every case. However, the so-
lution of Poisson pressure equation is a time consuming process.
Some corrections were offered to improve both of the methods.
Bonet and Lok [12] and Rodriguez-Paz and Bonet [13] proposed
and applied corrected SPH methods. One of the most important
aspects of their corrections was the improvement of the accuracy
of kernel gradient used to discretize the first spatial derivatives.
Shadloo et al. [14] showed that WCSPH can handle complex
geometries using the multiple boundary tangents method and
eliminate particle clustering-induced instabilities with the
implementation of a particle fracture repair procedure as well as
the corrected SPH discretization scheme. Using a modified
renormalization tensor, Fatehi and Manzari [15] proposed a new
SPH scheme for approximating second derivatives that has the

property of first-order consistency. In other studies, they also pro-
posed a remedy for nonphysical oscillations in WCSPH [16]. For
ISPH, Hu and Adams [17,18] proposed a constant-density con-
straint which has not been achieved by previous projection SPH
methods.

Some corrections, which improve accuracy and stability of the
SPH method, were mentioned above. Now, it can be stated that
WCSPH gives also quite accurate results as much as ISPH by add-
ing the proper numerical treatments to the numerical scheme like
density correction algorithms or the addition of density diffusion
terms to the mass conversation equation or particle shifting
algorithms.

Since SPH has the Lagrangian nature and is based on particles,
it is suitable to model the complex phenomena such as free
surface [19,20], two phase flow [4], moving boundary and fluid–
structure interactions (FSIs) [21–24]. The last one has its own
complexity for other numerical methods especially for the Euler-
ian and grid-based methods; immersed boundary [25,26] and arbi-
trary Lagrangian Eulerian (ALE) method [27] are the approaches
which are used for the grid-based methods. Therefore, some
investigations of the moving boundary and FSI problems has been
recently done using the SPH method; Kajtar and Monaghan [21]
described how the swimming of linked-rigid bodies can be simu-
lated using SPH. To simulate two way coupled FSI, Hashemi
et al. [22,23] coupled the immersed boundary method with SPH
method for the Newtonian and non-Newtonian fluid. Cohen et al.
[24] simulated the dolphin kick swimming by SPH to evaluate
variants of this swimming stroke technique.

In the present study, an algorithm is introduced which can be
useful for modeling the complex problems such as moving bound-
ary and one way FSI problems. In this algorithm, using the mass
conservation equation, the divergence of velocity is related to the
Laplacian of pressure. This pressure–velocity coupling causes to
remove the nonphysical fluctuations [16]. In addition, the kernel
gradient is renormalized using the first-order derivatives correc-
tive tensor. To avoid the tensile instability and defects phenom-
ena, a shifting procedure is considered. Although these were
separately examined, a combination of these modifications leads
to a robust and consistent WCSPH. To show the capability of the
model, it is applied and verified for three distinct laminar and
incompressible flow cases engaged with stationary and moving
boundaries; the first case involves the flow in a lid driven cavity
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for two Reynolds numbers 400 and 1000. Then the effect of num-
ber of particles on the convergence and accuracy is investigated.
The second case is the flow induced by a moving block in the ini-
tially stationary fluid in a rectangular cavity which is the well-
known sixth SPHERIC benchmark [28]. The third case involves
the simulation of the flow around a confined circular cylinder in a
channel with the periodic boundary condition.

In the following, first the governing equations and numerical
algorithm are discussed. Then the results and discussions includ-
ing three cases for verification of the proposed algorithm are
presented.

2 Governing Equations and Numerical Procedure

2.1 Formulation. The formulation of the SPH method is
based on an integral form which indicates each continuous defined
function over an interest domain X can be stated as

f ðrÞ ¼
ð

X
f r0ð ÞW r � r0; hð Þdr0 (1)

where r and r0 are position vector and subintegral variable, respec-
tively, h is the smoothing length, and W is the weight or kernel
function. The above equation can be approximated by a numerical
summation on the discrete points in the domain X

f rð Þ ¼
X

j

8jfjW r � rj; h
� �

(2)

where 8j is the volume of jth particle. In the present study, the
fifth-order Wendland kernel is used. Recent studies have shown
that the use of this Kernel function causes to increase the accuracy
[29].

W r; hð Þ ¼ W0 �
1� rj j

h

� �4

4
rj j
h
þ 1

� �
0<

rj j
h
< 1

0
rj j
h
>1

8>><
>>: (3)

where W0 is 7=ph2 for two-dimensional cases.

In the present study, the gradient, divergence, and Laplacian
operator for an arbitrary scalar function f or tensor function F are,
respectively, calculated as

rfh ii¼
X

j

8j fj � fi

� �
Bi:rWij (4)

r � Fh ii¼
X

j

8j Fj � Fi

� �
� Bi � rWij

� �
(5)

hr2f ii ¼
X

j

28j
fi � fj

rij
eij � Bi � rWij

� �
(6)

where eij is the unit vector in the interparticle direction (from j
to i) and B is a corrective tensor for kernel gradients which was
before applied and examined by Bonet and Lok [12]

Bi ¼ �
X

j

8jrijrWij

" #�1

(7)

The governing equations for the fluid flow are, respectively, mass,
momentum, and the state equations

dq
dt
¼ �qr � V (8)

q
dV

dt
¼ lr2V þ qg�rp (9)

p� p0 ¼ C2 q� q0ð Þ (10)

where q, V; p; l, and C are, respectively, the fluid’s density, veloc-
ity, pressure, viscosity, and speed of sound. Discretizing and
solving the above equations according to the SPH formulations
lead to the standard WCSPH method. The discretized equations
for WCSPH are as follows:

qnþ1
i
¼ qn

i 1� Dt r � Vnh ii
� �

(11)

pnþ1
i � p0

� �
¼ C2 qnþ1

i � q0

� �
(12)

Vnþ1
i ¼ Vn

i þ gþ �r2Vn
� �

i
� rpnþ1

q

� 	
i

� �
Dt (13)

rnþ1
i ¼ rn

i þ Vnþ1
i Dt (14)

where r is the particle position vector, n refers to previous time-
step, and nþ 1 refers to present time-step.

2.2 Predictive Corrective Scheme. As mentioned before, the
standard WCSPH suffers from the pressure and density fluctua-
tions [11]. Fatehi and Manzari [16] showed that the velocity–pres-
sure coupling reduces the nonphysical fluctuations. So a
pseudoconstant density algorithm is applied to remove the density
and pressure fluctuations to improve the WCSPH. The present
method has been based on a predictor–corrector scheme

Predictor Step: The discretization of the conservation of mass
(Eq. (8)) leads to

q�;nþ1
i

� qn
i

aDt
¼ �qn

i r � Vnþ1=2
D E

i
)

mi

8�;nþ1
i

� mi

8n
i

aDt

¼ �mi

8n
i

r � Vnþ1=2
D E

i
(15)

mi is constant, so the conservation of mass leads to

1

8�;nþ1
i

¼ 1

8n
i

1� aDt r � Vnþ1=2
D E

i


 �
(16)

where a is a coefficient which can vary between 0 and 1 and is the
ratio between the previous time-step (n) and intermediate time
step (�; nþ 1) and Vnþ1=2 is the intermediate velocity. Dividing
Eq. (9) by q leads to

dV

dt
¼ �r2V þ g�rp

q
(17)

where � is the kinematic viscosity. The right-hand side terms of
Eq. (17) are, respectively, acceleration terms due to viscous, buoy-
ancy and pressure forces. The SPH discretization of the above
equation will be

Vnþ1
i � Vn

i

Dt
¼ gþ �r2Vn

� �
i
� rp

q

� 	n

i

 !
(18)

So, the intermediate velocity can be defined as

V
nþ1=2
i ¼ V�;nþ1

i � aDt
rpn

q

� 	
i

(19)

where V�;nþ1
i is the part of intermediate velocity which is caused

by the buoyancy and viscous terms of fluid particle acceleration

V�;nþ1
i ¼ Vn

i þ gþ �r2Vn
� �

i


 �
aDt (20)
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Applying the divergence operator in Eq. (19)

r � Vnþ1=2
D E

i
¼ r � V�;nþ1
� �

i
�aDt r � rpn

q

� 	
i

(21)

and substituting in Eq. (16) leads to

1

8�;nþ1
i

¼ 1

8n
i

1� aDt r � V�;nþ1
� �

i
�aDt r � rpn

q

� 	
i

� �� �
(22)

Then, according to Eqs. (12) and (22), the pressure at the next
time-step is calculated by

pnþ1
i ¼ p0 þ C2 mi

8n
i

1� aDt r � V�;nþ1
� �

i



�

� aDt r � rpn

q

� 	
i

��
� q0

�
(23)

Corrector Step: The process defined in the predictor step is
only carried out to calculate the pressure. The final velocity, vol-
ume, and position of each particle for the new time-step are deter-
mined in the corrector step; the velocity of each particle is
updated using pervious velocity and current pressure gradient

Vnþ1
i ¼ Vn

i þ gþ �r2Vn
� �

i
� rpnþ1

q

� 	
i

� �
Dt (24)

Then, the new volume and density are, respectively, calculated by

1

8nþ1
i

¼ 1

8�;nþ1
i

1� ð1� aÞDt r � Vnþ1=2
D E

i


 �
(25)

qnþ1
i ¼ mi

8nþ1
i

(26)

Finally, the particle position is rearranged by

rnþ1
i ¼ rn

i þ Vnþ1
i Dt (27)

Beside from the modified discretization scheme (6), the basic dif-
ference between the standard WCSPH and proposed algorithms is
in the calculation of the divergence of the velocity for calculating
the density; the standard WCSPH uses the divergence of the ve-
locity of the previous time-step, while the proposed algorithm
uses the divergence of the intermediate velocity and Laplacian of
the previous time-step pressure.

2.3 Calculation Time-Step. The time-step (Dt ¼ tnþ1 � tn) is
calculated from the equation

Dt ¼ bt min
dmin

Umax

;
d2

min

t
;

ffiffiffiffiffiffiffiffi
dmin

g

s !
(28)

where bt is a constant coefficient which can be between 0 and 1,
dmin is the minimum distance between two neighboring particles,
Umax ¼ Cþ Vmax and Vmax is the maximum velocity of the
particles. The first term is obtained from the Courant–
Friedrichs–Lewy (CFL) condition which states that UmaxDt=dmin

should be less than 1. The second term is imposed for stability of
the viscous term and the third one is defined to satisfy the stability
of body force acceleration term in the momentum equation. Simi-
lar formulation has been proposed by Morris et al. [30]. However,
they used smoothing length (h) as the characteristic length scale,
while the minimum particle space (dmin) is considered as the char-
acteristic length scale in the present study. Whereas dmin is much

less than h, dmin can be more proper as the characteristic length
scale.

2.4 Shifting Particles. Tensile instability, defects, and par-
ticles’ clustering are complications in the SPH simulations. To
avoid the mentioned phenomena, a shifting algorithm similar to
the particle shifting strategy of Xu et al. [31] has been applied in
the present study. The direction and amount of shifting are deter-
mined from the arrangement of neighboring particles; the Dri is
defined as shifting particle vector which is calculated by

Dri ¼ e�ri (29)

where e can vary between 0 and 0.1 and �ri is equal to

�ri ¼
X

j

8jrijWij (30)

If the particles are homogeneously distributed around the particle
i, then �ri will be zero. Otherwise this vector shows that the distri-
bution of neighboring particles around the particle is not balanced.
Then the particle is slightly shifted by Dri. Ultimately, it is neces-
sary to modify the flow field variables in the new position. These
modifications according to the first-order Taylor series expansion
are

DVi ¼ Dri: rVh ii (31)

Dpi ¼ qiDri:
rp

q

� 	
i

(32)

Dqi ¼
Dpi

C2
(33)

So, the final value for velocity, pressure, and density of the ith
particle will be, respectively, Vfi ¼ Vi þ DVi, pf i ¼ pi þ Dpi, and
qf i ¼ qi þ Dqi:

2.5 Boundary Conditions. Two types of boundary condition
have been applied in the present study; dummy particles applied
for wall boundaries and periodic boundary condition applied for
flow boundaries. Dummy particles have widely been used to
impose wall boundary condition [11,30,32,33]. For the present
study, the dummy particles have been distributed similar to those
applied by Lee et al. [11]; three layers of dummy particles with
the same velocity of the wall particles (due to no slip condition)
have been arranged nearby each wall boundary. Dummy particles
scheme creates a condition very close to the no-slip boundary con-
dition. Lee et al. [11] proposed a proper scheme for the dummy
particles arrangement especially for the vertical corners. These
particles have also the same pressure of the wall in the normal
direction to satisfy the Neumann boundary condition. For the peri-
odic boundary condition, each particle exited from the outlet is
copied at the same position within the section at the inlet.

A pseudocode of the present solution algorithm is shown in
Table 1. C, a, and e are controlling parameters for the present
algorithm. Selecting the proper value for each of them affects on
the convergence rate and accuracy. C should be so big that the
incompressibility is guaranteed. a is the time-step coefficient for
calculation the intermediate time-step. Proper selection of a
reduces the divergence errors. It is assumed that the pressure is
constant during each time-step. So, the pressure at tþ aDt is equal
to that at tþDt. It is better that a is selected close to 1. However,
when a equals to 1, the algorithm loses its flexibility. Our experi-
ence shows that a¼ 0.8 can be a proper value to satisfy both of
the convergence and accuracy. e should be selected so big that the
homogeneous particles distribution is provided. However, increas-
ing e increases the approximation in the flow field and reduces the
accuracy. So, it is assumed that e varies between 0 and 0.1;
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0< e� 0.1. e is selected according to the problem complexity;
because of the major changes in the flow field due to rigid body
motion, e is selected between 0.08� e� 0.1 for the present
simulations.

For the present simulations, smoothing length is about three
times of the initial particles space; h¼ 3d. Fatehi and Manzari
[15] showed that first order discretization according to Eq. (4) sat-
isfies convergence properly and second-order discretization
according to Eq. (6) has conditional convergence; according to
their investigation for Eq. (6), 2.5< h/d< 3.5 is proper if the parti-
cle space is adequately small.

3 Results and Discussion

To show the accuracy of the present algorithm to simulate dif-
ferent fluid flows, three different cases are examined; the first case
is the simulation of the flow in the lid driven cavity for two Reyn-
olds number values of 400 and 1000. The second case consists of
a translating square cylinder in an initially stationary fluid in a rec-
tangular cavity and the third case is the flow modeling of the
transversely oscillating circular cylinder in the fully developed
channel flow.

3.1 Lid Driven Cavity. The lid driven cavity is a well-known
test for incompressible viscous fluid flow. The test case consists of
the motion fluid inside a square cavity whose upper wall moves
horizontally. The fluid is initially at rest and no-slip boundary con-
dition is applied for all sides. Two different Reynolds numbers
400 and 1000, based on the lid velocity (Uw) and the size of the
cavity side (L), are studied. Since the method is transient, the
results are reported at t� ¼ Ut=L ¼ 60. In this time, the variation
of the flow field is almost vanished. So, it can be compared with
the steady state results. In Fig. 1, the nondimensional horizontal
(ux/Uw) and vertical (uy/Uw) velocity components are, respec-
tively, plotted in the vertical and horizontal middle section of the
cavity for different particles numbers in comparison with the data
of Ghia et al. [34], ISPH results reported by Xu et al. [31] and
standard WCSPH reported by Lee et al. [11]. Other solution
parameters are C/Umax¼ 100, a¼ 0.8, and e¼ 0.08.

For a quantitative comparison, the average deviation from the
results of Ghia et al. [34] is defined as follows:

ErrðXÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN

i¼1

Xrefi
� Xi

Xrefi

� �2

vuut (34)

where X is the arbitrary variable, N is the number of points, and
Xref is the reference value reported by Ghia et al. [34]. For the
case: Re¼ 1000 with 160� 160 particles, Errðux=UwÞ and
Errðuy=UwÞ calculated for the present results in comparison with
ISPH results [31] and WCSPH results [11] are shown in Table 2.
As shown here, the results have good agreement with the data of
Ghia et al. [34] and are even better than those obtained by ISPH.
As mentioned before, the main aim of the present method is to
remove the nonphysical fluctuations of WCSPH. The accuracy is
significantly improved and the fluctuations are removed in com-
parison with the standard WCSPH results reported by Lee et al.
[11]. The fluctuations in the velocity profiles are clearly observed
in the standard WCSPH especially in the case with 40� 40 par-
ticles. However, the present method appropriately reduces these
nonphysical fluctuations. It should be noted that Lee et al. [11] did
not use particle shifting and kernel gradient correction for their
simulations. This figure also shows the convergence process well;
increasing the particles number increases the accuracy. The
streamlines for two Reynolds numbers 400 and 1000 have also
been shown in Fig. 2. It can be clearly seen that the simulations
using the proposed method properly reveal all of the vortices,
especially the vortices appeared in the corners of the cavity.

3.2 Moving Square Cylinder in an Initially Stationary
Fluid. The second case considered consists of a translating square
cylinder in a rectangular cavity. The results of Lee et al. [28]
obtained from an incompressible finite difference method (FDM)
are selected to validate the results. The coordinate system adopted
is indicated in the sketch in Fig. 3.

The square is moved rightward for t> 0 in two stages; first is
the cylinder motion starting from rest and accelerating to a final
steady maximum velocity (t< 1), and second is constant velocity
motion (1� t< 8). The no-slip condition is applied for all the wall
boundaries [28]. The test case is investigated for flow at Reynolds
numbers 50 and 150, based on the length of the square side and
maximum velocity of the square. Contour of velocity magnitude
for the present simulation and the reference solution [28] for
Re¼ 150 and t¼ 8 s is plotted in Fig. 4.

To compare quantitatively, the pressure drag coefficient for
Re¼ 50 and 150 are plotted in Fig. 5 for the present study and
mentioned benchmark data. The pressure drag coefficient has
been calculated from the equation

CD ¼
Fxj j

1
2
qU2

maxLb
(35)

where q is the fluid density, Umax is the maximum velocity of the
cylinder, L is the cylinder side, and b is the transversal length of
the prismatic surface [28]. The drag force Fx is calculated by

Fx ¼
ð

A

pnx � dA (36)

where p is the pressure acting on the cylinder, nx is x-direction
unit vector, and A is area vector. The results of another particle
method (FVPM [35]) and the standard WCSPH are also shown in
this figure.

The standard WCSPH is based on Eqs. (11)–(14). It is neces-
sary to mention that the shifting algorithm which is defined in
Sec. 2.4 is also applied for the standard WCSPH. The conver-
gence is not obtained without shifting algorithm. The results of
proposed algorithm have good agreement with the benchmark
data. As shown here, the present method has better agreement
with the benchmark data than the FVPM method and standard
WCSPH; the fluctuations are significantly decreased in the results
of the present method. In this study, the number of particles is
20,000 (to be the same with that of Ref. [35]) and the solution pa-
rameters are C/Umax¼ 25, a¼ 0.8, and e¼ 0.1. The fluctuations in
the drag coefficient come from the pressure waves returning from

Table 1 Algorithm of the present WCSPH method

for each time-step n do

find the neighboring particles;
apply the periodic boundary condition (if defined);
for each particle i do

compute V�;nþ1
i using Eq. (20);

calculate 8�;nþ1 using Eq. (22);
if i is an internal or wall particle then

calculate pressure using Eq. (23);
else (if i is a dummy particle)

update pressure of dummy particles;
end if

correct velocity using Eq. (24);
correct volume using Eq. (25);
correct density using Eq. (26);
update the position using Eq. (27);
if i is an internal particle then

shift the position by Dri evaluated from Eq. (29);
correct the velocity, pressure, and density using Eqs. (31)–(33);

end if

end for

end for
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the rectangular cavity walls. The present method somewhat over-
comes these fluctuations in comparison with FVPM.

3.3 Flow Over the Stationary and Transversally Oscillating
Cylinder. The last test case which is selected to examine the pro-
posed algorithm is the numerical investigation of the flow behav-
ior past a stationary and a transversely oscillating cylinder
confined in a channel (Fig. 6). In the following, each of them is
investigated separately. For all the cases, the particles number is
about 90,000 and the ratio of the channel height to the cylinder di-
ameter (H/D) and channel length to the cylinder diameter (L/D)
are, respectively, 3 and 31.

3.3.1 Stationary Case. In this case, the center of cylinder is
fixed in 4D and 1.5D away from the inlet and the channel walls.
No slip and periodic boundary conditions are, respectively,
defined for wall and flow boundaries. To create fluid flow in a
channel (without the cylinder), the body acceleration gx can be
imposed on the fluid particles. This acceleration generates a flow
same as the case which Dp ¼ qgxL applied on the ends of the

Fig. 1 The horizontal (above plots) and vertical (bottom plots) velocity profiles, respectively, in vertical and
horizontal middle sections of the lid driven cavity for Re 5 400 (left) and Re 5 1000 (right)

Table 2 The root-mean-square of differences with results of
Ghia et al. [34] for the case with 160 3 160 particles for the pres-
ent results in comparison with ISPH results [31] and WCSPH
results [11] for Re 5 1000

Errðux=UwÞ Errðuy=UwÞ

Present WCSPH 0.0899 0.0605
ISPH [31] 0.0822 0.1047
Standard WCSPH [11] 0.1925 0.1321

Fig. 2 The streamlines produced by the present SPH simula-
tion for the cases with 160 3 160 particles for Re 5 400 (left),
Re 5 1000 (right)
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channels. If the cylinder is added to the channel, according to
superposition law, gx will be

gx ¼
Dpch þ Dpcyl

qL
¼

Dpch þ
1

2
CDqU2

ave

qL
(37)

where Dpch is the pressure drop occurred in the channel and Dpcyl

is that due to the flow over the cylinder. Dpch can be approximated
easily using Uave (the average velocity magnitude in the inlet). So,
to estimate gx to achieve a desirable Reynolds number, it is neces-
sary to estimate the CD for that Reynolds number. However, this
approximation might not certainly lead to the desirable Reynolds
number. So, gx is corrected via a linear proportional coefficient.
The present periodic condition has also a difference with the
standard form. The vortex stretching down the cylinder causes to
deviate from the parabolic velocity profile at the outlet. So, a
modified flow boundary condition is applied. The present flow
boundary condition is similar with the periodic boundary condi-
tion. Except the velocity condition, the conditions which are nec-
essary for the periodic boundary condition are imposed. However,
velocity of the copied particles is modified according to the para-
bolic velocity profile. For each time-step, average velocity (Uave)
at the outlet section is calculated. Then, the velocity of the copied
particle is modified as follows:

ui ¼
3

2
Uave 1� 1� 2yi

H

� �2
 !

(38)

A slightly modified periodic boundary condition has also been
implemented by Shadloo et al. [36] for inlet and outlet particles in
the direction of the flow.

Two Reynolds numbers 40 and 100 based on the cylinder diam-
eter and average inlet velocity are considered for the stationary

case and the results of the flow simulations according to the pro-
posed algorithm are shown in Fig. 7. As expected, the vortices in
the Re¼ 40 are symmetric and balanced and for Re¼ 100, the
vortex shedding occurs.

The pattern of vorticity contour for the stationary case is plotted
in Fig. 8. The vorticity is calculated by

x ¼ @v

@x
� @u

@y
(39)

where u and v are, respectively, horizontal and vertical compo-
nents of the velocity.

In Fig. 9, the velocity profiles in the wake region for Re¼ 40
are compared with those reported by Ozalp and Dincer [37].

Recirculation length (Lr) and separation location are specified
in Fig. 7. The dimensionless recirculation length (Lr/D) and

Fig. 3 Initial state (t 5 0) of square in the rectangular cavity

Fig. 4 Contour of the velocity magnitude of the force motion of
the square for Re 5 150 in the initially stationary flow for simula-
tion of Lee et al. [28] (top) and present SPH algorithm simula-
tion (bottom)

Fig. 5 Time variations of the pressure drag coefficient for
incompressible FDM [28], FVPM [35], standard WCSPH, and
present SPH method

Fig. 6 Schematic of a channel confined flow over a circular
cylinder
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separation location angle (hs) for the present simulation compared
with those reported by Ozalp and Dincer [37] are shown in Table
3. The plot data have been nondimensionalized by the average
velocity (Uave) and cylinder diameter (D). For Re¼ 100, the
Strouhal number (St ¼ f0D=Uave) and dimensionless lift force
(FL=qU2

aveD) for the present study and finite element results
reported by Celik et al. [38] are compared in Table 4 (f0 is the
frequency of vortex shedding). The solution parameters are
C/Umax¼ 40, a¼ 0.8, and e¼ 0.08.

3.3.2 Transversally Oscillating Cylinder. This case is similar
with the stationary case, but the difference is that the cylinder
oscillates in the y-direction. The analysis of the stationary case
was necessary because the frequency of vortex shedding is
required to adjust the motion of the cylinder in the transversely
oscillating cylinder case; usually a dimensionless number like
F ¼ ff=f0 is defined to investigate the effect of the cylinder oscil-
lation on the flow behavior (ff is the frequency of the cylinder os-
cillation and f0 is the vortex shedding frequency for the stationary
cylinder case). Equation of cylinder oscillation is

y ¼ ymax sin 2pff t
� �

(40)

where ymax ¼ 0:4D is considered here as the oscillation
amplitude.

In Table 5, the dimensionless lift forces for different F numbers
are compared with those obtained by Celik et al. [38] using ALE
method. As an example, the variation of dimensionless Lift force
versus dimensionless time (t� ¼ tUave=D) for F¼ 1.25 is plotted
in Fig. 10.

In Figs. 11 and 12, the contours of vorticity and streamlines for
different F numbers in the case of Re¼ 100 are plotted. The effect
of the F number on the vorticity pattern is clearly indicated in
Fig. 11. Increasing the F number decreases the distance between
two consecutive dark and light regions and increases the number
of such regions. The von Karman streets created for different F
numbers are shown in Fig. 12. The flow separation also causes to
create some vortices near the channel walls.

Fig. 7 SPH simulation of flow regimes past a stationary
confined circular cylinder for Re 5 40 and Re 5 100

Fig. 8 Patterns of vorticity contour for stationary confined
circular cylinder at Re 5 100

Fig. 9 Velocity profiles in the wake region for the Re 5 40 case
in comparison with the Ozalp and Dincer [37] data

Table 3 Comparison between present simulation and Ozalp
and Dincer [37] results for dimensionless recirculation length
and separation angle

hs Lr/D

Present study 49.41 1.111
Reference [37] 46 1.1825

Table 4 Comparison between the present simulation and data
of Celik et al. [38] for Strouhal number and maximum lift force
for the case Re 5 100

St Maximum lift force

Present study 0.357 0.238
Reference [38] 0.36 0.247

Table 5 Maximum lift force in different F numbers for present
study and results of Celik et al. [38]

Case F Maximum lift force

Present study 0.75 0.239
Reference [38] 0.75 0.24
Present study 1.0 0.96
Reference [38] 1.0 0.881
Present study 1.25 4.097
Reference [38] 1.25 4.03
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4 Conclusion

In the present study, a robust modified weakly compressible
smoothed particles hydrodynamic method based on a renormal-
ized predictor–corrector scheme was introduced. The strong point
of this algorithm is the combination of the most important modifi-
cations, such as velocity–pressure coupling for WCSPH, kernel
gradient correction, and shifting algorithm. In order to achieve
this, using the mass conservation equation, the divergence of the
velocity is related to the Laplacian of the pressure. This correction
helps to reduce the nonphysical pressure and density fluctuations
and improves the accuracy. Because of this, the proposed algo-
rithm can be used to model moving boundary problems and one
way coupled FSIs. To show the ability of the proposed algorithm,
three different cases were tested. In the first case, the lid driven
cavity flow for two Reynolds numbers (400 and 1000) is consid-
ered. The effect of the number of particles on the convergence
and accuracy is investigated. The results have good agreement
with the benchmark data. The second case involved a moving
square cylinder in the fluid which was initially at rest in a rectan-
gular cavity. This case is rather a complex problem because the
pressure waves which are returned from the rectangular walls usu-
ally cause the simulation to diverge. The present algorithm could
remove this pressure waves; the results of pressure drag coeffi-
cient for two Reynolds numbers for the present study in compari-
son with another particle method (FVPM) and the standard
WCSPH confirmed this claim. The last test case examined by the
proposed algorithm was the numerical investigation of the flow
behavior past a stationary and transversely oscillating cylinder
confined in a channel; to study the effect of the cylinder oscilla-
tion on the flow, three different F numbers: F¼ 0.75, F¼ 1.0, and
F¼ 1.25 are considered and the vorticity pattern and streamlines
are compared.

Nomenclature

A ¼ area vector
B ¼ corrective tensor for kernel gradients
b ¼ transversal length of the prismatic surface
C ¼ speed of sound

CD ¼ drag coefficient
D ¼ cylinder diameter
eij ¼ the unit vector in the interparticle direction (from j to i)

Err ¼ mean average error
f ¼ arbitrary scalar function
ff ¼ frequency of the cylinder oscillation
f0 ¼ vortex shedding frequency
F ¼ arbitrary tensor function
F ¼ nondimensional frequency of cylinder motion

Fx ¼ horizontal force
g ¼ buoyancy acceleration
h ¼ smoothing length
H ¼ channel height
L ¼ length

Lr ¼ recirculation length
m ¼ mass
n ¼ time-step counter

nx ¼ x-direction unit vector
p ¼ pressure
r ¼ position vector

r0 ¼ subintegral variable
t ¼ time
u ¼ horizontal component of the velocity
v ¼ vertical component of the velocity

V ¼ velocity
W ¼ weight or kernel function
X ¼ arbitrary variable
8j ¼ volume of jth particle

a;bt ¼ time-step coefficient
d ¼ initial particle space

Fig. 11 Vorticity contours for flows with F 5 0.75, F 5 1.00, and
F 5 1.25 at Re 5 100

Fig. 12 Streamlines (von Karman streets) behind the oscillat-
ing cylinder for F 5 0.75, F 5 1.00, and F 5 1.25 at Re 5 100

Fig. 10 Variation of nondimensional Lift force versus
nondimensional time for F 5 1.25

031201-8 / Vol. 137, MARCH 2015 Transactions of the ASME

Downloaded From: http://fluidsengineering.asmedigitalcollection.asme.org/ on 01/28/2016 Terms of Use: http://www.asme.org/about-asme/terms-of-use



dmin ¼ minimum distance between two neighboring particles
e ¼ displacement coefficient

hs ¼ separation location angle
l ¼ viscosity
� ¼ kinematic viscosity
q ¼ density
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