
water

Article

Numerical Simulation of Liquid Sloshing with
Different Filling Levels Using OpenFOAM and
Experimental Validation

Yichao Chen 1 and Mi-An Xue 1,2,*
1 College of Harbour Coastal and Offshore Engineering, Hohai University, Nanjing 210098, China;

17625972812@163.com
2 State Key Laboratory of Hydraulic Engineering Simulation and Safety, Tianjin University,

Tianjin 300072, China
* Correspondence: coexue@hhu.edu.cn

Received: 3 November 2018; Accepted: 23 November 2018; Published: 28 November 2018 ����������
�������

Abstract: A series of numerical simulations were performed to explore the influences of filling level,
excitation frequency and amplitude on liquid sloshing by using the open source Computational Fluid
Dynamics toolbox OpenFOAM (Open Field Operation and Manipulation), which was fully validated
by the experimental data. The results show that the dynamic impact pressure is proportional to the
external excitation amplitude only in non-resonance frequency ranges. Pressure-frequency response
curves demonstrate a transition process from a ‘soft-spring’ response to a ‘hard-spring’ response
following the changes of the filling level. Such a transition process is found to be dominated by the
ratio of the filling level to tank length and the critical value can be obtained. It is also found that
wave breaking influences the period of sloshing wave in tanks and ultimately alters the resonance
frequency from the linear theory.
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1. Introduction

Sloshing is a phenomenon commonly found in partially-filled liquid storage vessels, such as
liquid cargo tanks and fuel tanks, in motion. Violent sloshing may result in serious structural damages
to the liquid-tank or even overturn the liquid cargo ship. Thus, a reliable prediction of the sloshing
is crucial for the design and deployment of such structures. For this purpose, theoretical analyses,
physical experiments, and numerical simulations are commonly utilized.

As a pioneer, Moiseev [1] developed a nonlinear analytical solution for the sloshing problem by
using the approximations and modal methods combined with the potential flow theory. Based on
Moiseev theory, Faltinsen [2] developed a third-order steady-state solution for the liquid sloshing in a
2D rectangular tank under the swaying and rolling excitations. Faltinsen [3,4] also established nonlinear
analytical solutions for liquid sloshing in a rectangular tank by using the multimodal approach. Ikeda
and Nakagawa [5] studied liquid sloshing in a rectangular tank under a horizontal excitation using
the potential flow theory and analyzed the influence of fluid sloshing on the nonlinear vibration of
the structure. However, the theoretical analysis approach may lead to unreliable predictions when
complex physical phenomena such as wave breaking and slamming occur due to their fundamental
assumption of the potential flow.

Physical experiments are considered an accurate approach and have been widely used to
investigate liquid sloshing particularly with a focus on the prediction of the impact pressure. Pistani
and Thiagarajan [6] conducted a series of sloshing experiments to accurately measure the high pressure
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generated during the impacts of the fluid. Xue et al. [7] experimentally investigated the effectiveness
of baffles on reducing the sloshing pressure. Kalinichenko and Sekerzh-Zenkovich [8] experimentally
studied the relationship between the maximum wave height and the Faraday wave frequency and
analyzed the crushing mechanisms of several types of sloshing waves, the broken form and jet flow
formation of Faraday waves under vertical excitations. In their study, the attenuation coefficients of
different modal waveforms and the relationship between wave breaking and frequency were also
obtained. Xue et al. [9] designed and built a liquid sloshing experimental rig driven by a wave-maker
to study liquid sloshing problems in a rectangular tank with perforated baffles. Their results showed
that the perforated baffle with a suitable orifice size is an effective baffle arrangement for reducing
the sloshing amplitude at higher excitation frequencies. Cai et al. [10] conducted an experimental
study on the resonance frequency and maximum impact pressure in Liquefied Natural Gas (LNG)
carriers. Generally speaking, the experimental studies have made a significant contribution to advance
the knowledge and to explore physics, but they are relatively expensive and are subjected to certain
limitations, e.g. the scaling problem and difficulties on measuring the temporal-spatial variations of
physical quantities.

Numerical simulations are now a popular approach for studying liquid sloshing. Xue et al. [11]
developed a finite difference model for solving the Navier-Stokes (NS) equation with a turbulence
model being incorporated to investigate the viscous liquid sloshing-wave interaction with baffles in a
tank. Liu and Lin [12] numerically studied 3D non-linear liquid sloshing with broken free surfaces. In
their model, the large-eddy-simulation (LES) approach is adopted to account for the effect of turbulence
by using the Smagorinsky sub-grid scale (SGS) closure model. Buldakov [13] considered a 2D sloshing
problem in a rectangular tank under horizontal and vertical excitation using a Lagrangian model.
Xue et al. [14] modelled the liquid sloshing in a baffled-tank using a time domain NS solver. Kim [15]
investigated 2D and 3D liquid sloshing in containers by solving the NS model using the solution
algorithm “Synchronized OverLap-and-Add” (SOLA) scheme, in which the free surface profile is
assumed to be a single-valued function. Ramaswamy et al. [16] studied 2D viscous flow sloshing by
using the Lagrange-finite element method. Oxtoby [17] described a semi-implicit volume-of-fluid
(VOF) free surface modelling methodology for flow problems involving violent free-surface motions.
Kishev et al. [18] developed a new Computational Fluid Dynamics (CFD) simulation approach based
on the constraint interpolation profile (CIP) method to tackle the violent sloshing problem. Chen
and Zong [19] presented an improved Smoothed Particle Hydrodynamics (SPH) model for the liquid
sloshing and discussed the relationship between the pressure amplitude and the excitation frequency.
Xue and Lin [20] studied the effects of ring baffles on reducing the violent liquid sloshing using their
3D free surface turbulent model and discussed the damping mechanism of the ring baffle. Kim [21]
applied both the finite-difference method and SPH model to the simulation of violent sloshing. Jin
and Lin [22] investigated the viscous effects on liquid sloshing under external excitations and found
that the peak value of the maximal pressure occurs near the natural frequency with a very small (less
than 3% of natural frequency) phase shift due to the wave nonlinearity. Recently, the open source CFD
toolbox, OpenFOAM, has also been used to study the sloshing and coupling effects with ship motion
and other problems [23–25].

Although a great deal of effort has been devoted to studying the liquid sloshing using the
above-mentioned three approaches, challenges and research gaps still exist, especially for violent
liquid sloshing, in which the nonlinearities due to the breaking waves and hydraulic jump in a shallow
water condition may invalid the analytical solutions. One specific issue is the occurrence of the
resonance, which normally leads to the possible highest pressure, for the liquid sloshing in a tank
with widely-ranged filling levels and large excitation amplitudes. This paper aims to contribute to
this issue using a systematic numerical investigation using OpenFOAM with the aid of experimental
studies. The filling level, excitation amplitudes, and frequencies are considered as the main variables
in the investigations.
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2. Numerical Model

This study employs the InterDyMFoam module in the OpenFOAM, which is a two-phase NS
solver for incompressible, isothermal immiscible fluids with optional mesh motion and mesh topology
changes including adaptive re-meshing. The interface capturing approach used in this module is the
volume of fluid (VOF) based on the phase-fraction. The continuity equation, momentum equation,
and phase equation are, respectively, as follows.

∂ρ

∂t
+∇ · (ρU) = 0 (1)

∂ρU
∂t

+∇ · (ρUU)−∇ · τ = Cκ∇α− gh∇ρ−∇prgh (2)

Dα

Dt
=

∂α

∂t
+∇ · (αU) = 0 (3)

where ρ is the density, U is the fluid velocity vector, τ is the shear stress, C is the surface tension
coefficient which is set to 0 in the current investigation, k is the interface curvature, α is the volume
fraction, g is the acceleration of gravity, h is the position vector of the mesh centre measured from the
coordinates origin, prgh is the dynamic pressure. The fluid density ρ and the viscosity coefficient µ

are respectively calculated by densities (ρ1, ρ2) and viscosity (µ1, µ2) of two fluids using the volume
fraction α,

ρ = αρ1 + (1− α)× ρ2

µ = αµ1 + (1− α)× µ2
(4)

OpenFOAM uses the Finite Volume Method to discretize its governing equations. A first-order
implicit Euler discretization scheme is used for dealing with the time derivative terms, e.g., ∂U/∂t and
∂α/∂t. The Gauss linear discretization scheme is selected for gradient estimation, e.g., ∇·U. Gauss
linear corrected is considered for laplacian schemes such as ∇prgh, ∇ρ. With regard to the divergence
terms such as ∇·(UU) and ∇·(Uα), the van Leer scheme is used. The PIMPLE algorithm, which is a
combination of PISO (Pressure Implicit with Splitting of Operator) and SIMPLE (Semi-Implicit Method
for Pressure-Linked Equations), is used for the velocity-pressure decoupling. More details of the
InterDyMFoam can be found in the OpenFOAM website or other references. These will not be repeated
here, only the solution process of the InterDyMFoam is illustrated in Figure 1 for completeness.
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Figure 1. The flow chart of the solution.

3. Experimental Setup

For the purpose of validating the numerical model, as well as exploring detailed physics associated
with the liquid sloshing, a series of experiments are carried out in the Laboratory of Vibration Test
and Liquid Sloshing at the Hohai University, China. A six-degree of freedom (DoF) motion simulation
platform, which is commonly known as a hexapod and is able to perform six-DoF motions regularly
or randomly according to an appropriate input of time histories, is utilized to generate the forced
motions of the liquid tank, as shown in Figure 2. The tank used in the experiments is a rectangular
tank made of plexiglass with an 8-mm thickness. The internal dimensions of the rectangular tank
are L = 600 mm in length, W = 300 mm in width and H = 650 mm in height. A horizontal sinusoidal
motion x = −A sin ωt is assigned to the rectangular tank. The amplitude and frequency of the motion
can be set up through a control computer. The displacement of the motion platform was recorded by a
displacement sensor. Figure 3, which compares both the actual motion platform displacement and
theoretical displacement, indicates that the experimental apparatus has high motion accuracy.
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Figure 3. The comparisons of both the actual motion platform displacement and theoretical 
displacement (amplitude is 7 mm, ωA = 1.425 rad/s, ωB = 4.749 rad/s, ωC = 14.249 rad/s). 

In the experimental study, two filling levels, 13.8% and 30.8%, are considered. For measuring 
the dynamic impact pressure on the tank wall, five pressure sensors are embedded in the left wall, as 
shown in Figure 2. Their specific locations are illustrated in Figure 4. A camera was fixed in front of 
the rectangular tank to record the profile of the free surface.  
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Figure 3. The comparisons of both the actual motion platform displacement and theoretical
displacement (amplitude is 7 mm,ωA = 1.425 rad/s,ωB = 4.749 rad/s,ωC = 14.249 rad/s).

In the experimental study, two filling levels, 13.8% and 30.8%, are considered. For measuring
the dynamic impact pressure on the tank wall, five pressure sensors are embedded in the left wall, as
shown in Figure 2. Their specific locations are illustrated in Figure 4. A camera was fixed in front of
the rectangular tank to record the profile of the free surface.

With the assumption of potential flow theory, the natural frequencies can be analytically
determined as [26]

ωn =

√
g

πn
L

tanh(
πn
L

h), n = 1, 2, 3, (5)

where n is the mode number and h is the filling level. According to Equation (5), the first-mode natural
frequencies are ω1 = 4.749 rad/s and ω1 = 6.333 rad/s for the tank with the low (13.8%) and high
(30.8%) filling level, respectively.
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Figure 4. The inner dimension of the rectangular tank and the layout of five pressure sensors. 
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4.2. Experimental Validation

To validate the numerical model for the cases with different sloshing conditions, six sets of
experimental data with two different filling levels and three different excitation frequencies are
employed. The comparisons between the experimental data and the numerical results are illustrated in
Figure 6, in which the red circles represent the experimental data and the black line represents
the numerical results. Overall, the numerical results agree with the experimental data for the
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non-resonance (Figure 6a–d), near-resonance (Figure 6b–e), or fully-resonance (Figure 6c–f) conditions.
It is noticed that the discrepancies between the numerical results and experimental results in the cases
shown in Figure 6a,b become relatively more significant after t = 15 s. Further analysis on the pressure
spectra (Figure 7) suggests that the difference in Figure 6a is mainly caused by the fundamental
pressure component (i.e., ω1) and the experimental data decays after t = 15 s. For the case shown in
Figure 6b, the spectra shown in Figure 7b further confirm a satisfactory agreement. In addition, the
free surface profiles are also compared. Some results in the case with a resonance excitation are shown
in Figure 8, which compares the wave profiles at six instants between 8.55 s and 9.17 s. A good match
has been observed.
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Figure 7. The Fast Fourier Transformation of the time history of the experimental and numerical
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Figure 7. The Fast Fourier Transformation of the time history of the experimental and numerical 
pressure (amplitude is 7 mm, h = 90 mm, ωa = 0.5 ω1, ωb = 0.8 ω1). 
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Figure 11. The locations of pressure probes.

Figure 12 compares the pressure-time histories at the probes located at the same height from
the tank bottom in 3D numerical simulations but different transverse positions. As observed, the
impact pressures at different transverse positions but the same height are largely the same, except the
pressures at the corner of the tanks, e.g., P1, P4, and P7. Further comparison in Figure 13 shows that the
3D model leads to a slightly better prediction on the pressures on the corner points, compared to the
2D simulations. However, the superiority of the 3D model over the 2D model is not obvious in terms
of the improvement of the computational accuracy. Considering the high computational demand of
the 3D simulation, as demonstrated in Table 1, one may agree that the 2D model is preferable in terms
of computational robustness for the problems concerned in this paper.
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Table 1. The comparison of parameters between the 2D model and 3D model.

Two-dimensional Model Three-dimensional Model

Mesh Size 5 × 5 mm 5 × 5 × 5 mm
Mesh Number 15,600 936,000

Computing CPU:AMD Ryzen 7 1700X Eight-Core Processor 3.40 GHz no parallel
Times 1962 s 394,971 s

Analysis of Result In agreement with the experimental data;
Sometimes there are large pressure peaks.

Match well with the
experimental value

5. Results and Discussions

5.1. Effects of External Excitation Amplitudes

The excitation amplitude is an important factor that influences the intensity of the sloshing in
the forced sloshing problem, and it reflects the input energy of the system. In this study, the influence
of amplitude on the sloshing under different conditions will be discussed after a series of numerical
studies being conducted. These cases are summarized in Table 2.

Table 2. The numerical case parameters.

Case h/L ω1 (rad/s) ω/ω1 ω A(m)
Case 1

0.15 4.749

0.5 2.3745

0.001
0.003
0.005
0.007
0.01
0.02

Case 2 0.6 2.8494
Case 3 0.7 3.3243
Case 4 0.8 3.7992
Case 5 0.9 4.2741
Case 6 1 4.749
Case 7

0.33 6.333

0.5 3.1665
Case 8 0.6 3.7998
Case 9 0.7 4.4331
Case 10 0.8 5.0664
Case 11 0.9 5.6997
Case 12 1 6.333

Figure 14 displays the response curves of the maximum impact pressure vs. the amplitude of the
forced motion at different combinations of the filling level and frequency. It is worth mentioning that
the vertical coordinate represents the peak of impact pressure which, at P1, was non-dimensionalized
based on water depth, density and gravity (P = P0/ρgh, h is set as 0.2 m). Data obtained through
physical model experiments (the amplitudes are 3 mm, 5 mm and 7 mm respectively) are also added
to Figure 14 for validation. It can be noted that the impact pressure increases as the amplitude
increases and that increase is basically linear in the non-resonance range. In order to further illustrate
this relationship, Figure 15 shows the pressure-time histories in the cases with different excitation
amplitudes. For the convenience of the comparison, the pressure results in the cases with A = 1 mm
multiplied by a scaling factor of 3 is able to be comparable with the corresponding results with
A = 3 mm. If two curves in Figure 15 match with each other (e.g., Figure 15a–d), the pressure is then
linearly dependent on the motion amplitude; otherwise, the nonlinearity becomes more important (e.g.,
Figure 15e–f). This condition often occurs following the occurrence of wave resonance and breaking.
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5.2. Resonant Hysteresis and Resonance in Advance

In the sloshing problem, the natural frequency of the tank can be computed using the analytical
solution based on the potential flow theory Equation (5). However, the frequency leading to the
maximum impact pressure is generally not consistent with the natural frequency due to the nonlinearity.
The theory [28] has indicated the change in the resonant response from a so-called ‘hard-spring’ to
‘soft-spring’ behaviour as the filling level increases. Kobine’s [29] confirms the predicted change in
the hysteresis behaviour with an increasing filling level. Based on these studies, this section mainly
conducts studies to explore the mechanism of the resonant hysteresis.
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A large number of numerical simulations are performed to explore the influence of the filling
level on the response between the impact pressure of tank wall and external excitation frequency. The
specific parameters of the cases are in Table 3. There are 10 filling levels, one amplitude of motion,
15 external excitation frequencies, 30 s of sloshing duration considered. In order to gather more stable
and accurate pressure data, the pressure probe is set at the bottom of the tank wall which is away from
the pressure impacts (h = 30 mm).

Table 3. The numerical case parameters.

Case h/L L(m) h(m) A(m) ω1 (rad/s) ω (rad/s)

Case 13 0.054

0.6

0.0324

0.007

2.942

0.8ω1–1.2ω1

Case 14 0.1 0.06 3.953
Case 15 0.15 0.09 4.749
Case 16 0.217 0.1302 5.514
Case 17 0.25 0.15 5.804
Case 18 0.28 0.168 6.023
Case 19 0.3 0.18 6.15
Case 20 0.33 0.198 6.316
Case 21 0.433 0.2598 6.711
Case 22 0.596 0.3576 6.999

Figure 16 shows the pressure-frequency response curves at 10 different filling levels. In
Figure 16c–h, the corresponding experimental are also included for comparison, which, once again,
show good agreements and reinforce the credibility of experimental and numerical models. In all the
cases, the pressure increases as the frequency increases and then decreases afterword. However, at
different filling levels, the rate of increase/decrease and the maximum response frequency are not the
same. It can be clearly seen that when the filling level changes from low to high, the ascending process
before the maximum response frequency becomes shorter, and the descending process after that
becomes longer, the maximum response frequency (Marked in the Figure 16) decreases from 1.18ω1

to 0.92ω1 instead of keeping the first-mode natural frequency computed by the potential theory.
As is shown in Figure 16a–c, there are ‘soft-spring’ responses in shallow water sloshing; it is

characterized by a rapid decrease after a slow rise to the maximum response value, with the maximum
response frequency higher than the natural frequency. Besides, Figure 16h–k show a ‘hard-spring’
response in deepwater sloshing. Its characteristic is a slow descent after a rapid rise to the maximum
response value and maximum response frequency is less than natural frequency. There is a critical
depth, as shown in Figure 16e, at which level the resonance curve becomes symmetric about the
natural frequency, being consistent with the resonance in normal harmonic systems.

The occurrences of the ‘soft-spring’ response and the ‘hard-spring’ response may be mainly caused
by the nonlinear effect of wave breaking. In order to study the effect of wave breaking, unbroken
cases of shallow water and deepwater are set up. With all other conditions remaining the same,
the amplitude was reduced to 0.5 mm to make sure that the free surface is not broken during the
whole process of sloshing. Figures 17 and 18 show the pressure-frequency response curve, the mean
squared error-frequency response curve, the pressure-time history curve, and the spectral analysis
at the maximum response frequency in the case of breaking and non-breaking. It should be noted
that when at the same depth but without wave breaking, the phenomenon of resonant hysteresis
disappears, and the analysis of the max pressure and mean squared error show a similar trend. It is
well known that the double peak phenomenon in the pressure-time history curve under resonance
indicates two impacts on the tank wall after the sloshing wave is broken. It can be seen in Figure 17
that the resonant sloshing at the low filling level has broken in the third period of sloshing, far earlier
than the resonant sloshing at the high filling level. The Fourier transform in Figures 17 and 18 shows
that more multiplications of the natural frequency appear in the wave breaking case and the case at
the low filling level, which also shows that the phenomenon of wave breaking, will produce nonlinear
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effects and the sloshing at the low filling level has stronger nonlinearity than the sloshing at a high
filling level.

produce nonlinear effects and the sloshing at the low filling level has stronger nonlinearity than the 
sloshing at a high filling level. 
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Figure 16. The pressure–frequency response curves at different filling levels. (a) h/L = 0.054, (b) h/L =
0.1, (c) h/L = 0.15, (d) h/L = 0.217, (e) h/L = 0.25, (f) h/L = 0.28, (g) h/L = 0.3, (h) h/L = 0.33, (i) h/L =
0.433, (j) h/L = 0.596.

Based on the previous section’s conclusion that the external excitation amplitude has a linear
effect on the sloshing pressure, the pressure of the A = 0.5 mm case has been expanded 14 times to
compare with the pressure of the A = 7 mm case to investigate how the sloshing state will be if the
wave cannot break. As shown in Figure 19, the two curves all coincide before wave breaking, but the
difference happened after the waves break. A significant phase advance occurred in the pressure-time
history curve of shallow water sloshing, and phase delay appears in the pressure-time history curve of
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shallow water sloshing. This result shows that wave breaking will change the period of liquid sloshing
in the tank. In the condition of shallow water, the period of the liquid sloshing decrease with wave
breaking, the maximum response can be achieved at an external excitation frequency greater than the
natural frequency. As for deepwater sloshing, the period of the liquid sloshing goes up with the wave
breaking, so the system resonance can be excited at an external excitation frequency lower than the
natural frequency. These are the root causes of resonant hysteresis and resonance in advance.

Why does the wave breaking have different effects on shallow water and deepwater sloshing?
The hydraulic jump is a common phenomenon in shallow water sloshing; Figure 20 shows the wave
propagation process before and after the occurrence of the hydraulic jump in the resonant case. It
should be noted that the process of a sloshing wave propagating from the highest point on the right
wall to the highest point on the left wall takes 0.71 s before the occurrence of the hydraulic jump, but it
becomes 0.67 s after the hydraulic jump happens. One reason for this phenomenon is that the liquid
climbing up the wall falls vertically and hits the free surface as shown in Figure 20; this force accelerates
the velocity at the free surface of the sloshing wave so that the period of the liquid sloshing decreases.
The wavelength of deepwater sloshing is longer, a standing wave phenomenon occurs under the
excitation of resonance. Figure 21 shows the complex nonlinear phenomenon in deepwater resonant
sloshing. It can be seen that there are obvious roof slamming phenomena and aerification which may
dissipate energy during each impact. Besides, a large amount of liquid splashing will reduce the depth
of water, which will lead to lower wave speed and a longer period of deepwater sloshing.
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Figure 18. The effects of wave breaking on deepwater sloshing. 
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splashing will reduce the depth of water, which will lead to lower wave speed and a longer period of 
deepwater sloshing.  

-0.5

0.0

0.5

1.0

1.5

-0.3

0.0

0.3

0.6

0.9

0 5 10 15 20 25 30

-1

0

1

2

0 5 10 15 20 25 30
-0.6

-0.3

0.0

0.3

0.6

h/L=0.1
ω / ω1=1

P
/ρ

gh

 P(0.5mm)*14
 P(7mm)

h/L=0.1
ω / ω

1
=1.1B

h/L=0.596
ω / ω

1
=1

P
/ρ

gh

t(s)

h/L=0.596
ω / ω1=0.92

t(s)

B

 
Figure 19. The comparison of pressure-–time history curve with wave breaking or not. (red line: 
wave breaking; black line: no wave breaking). 

 
Figure 20. The fluid phenomenon in shallow water sloshing (h/L = 0.1, ω/ω1 = 1.1, A = 7 mm, the 
falling liquid hits the free surface in the red circle). 

 
Figure 21. The fluid phenomenon in deepwater sloshing (h/L = 0.596, ω/ω1 = 0.92, A = 7 mm, the 
phenomena of roof slamming and aerification occurred in the red circle). 

6. Conclusions 

A liquid sloshing numerical model was developed based on OpenFOAM in this study, and a 
series of experiments were conducted to validate the accuracy of the model. The satisfactory 

Figure 20. The fluid phenomenon in shallow water sloshing (h/L = 0.1, ω/ω1 = 1.1, A = 7 mm, the
falling liquid hits the free surface in the red circle).

Water 2018, 10, x FOR PEER REVIEW  16 of 18 

 

reduce the depth of water, which will lead to lower wave speed and a longer period of deepwater 
sloshing.  

-0.5

0.0

0.5

1.0

1.5

-0.3

0.0

0.3

0.6

0.9

0 5 10 15 20 25 30

-1

0

1

2

0 5 10 15 20 25 30
-0.6

-0.3

0.0

0.3

0.6

h/L=0.1
ω / ω1=1

P
/ρ

gh

 P(0.5mm)*14
 P(7mm)

h/L=0.1
ω / ω

1
=1.1B

h/L=0.596
ω / ω

1
=1

P
/ρ

gh

t(s)

h/L=0.596
ω / ω

1
=0.92

t(s)

B

 
Figure 19. The comparison of pressure-–time history curve with wave breaking or not. (red line: wave 
breaking; black line: no wave breaking). 

 
 

 
Figure 21. The fluid phenomenon in deepwater sloshing (h/L = 0.596, ω/ω1 = 0.92, A = 7 mm, the 
phenomena of roof slamming and aerification occurred in the red circle). 

6. Conclusions 

A liquid sloshing numerical model was developed based on OpenFOAM in this study, and a 
series of experiments were conducted to validate the accuracy of the model. The satisfactory 
agreement between experimental and numerical data gives support to the assumption that the model 

Figure 21. The fluid phenomenon in deepwater sloshing (h/L = 0.596, ω/ω1 = 0.92, A = 7 mm, the
phenomena of roof slamming and aerification occurred in the red circle).

6. Conclusions

A liquid sloshing numerical model was developed based on OpenFOAM in this study, and a
series of experiments were conducted to validate the accuracy of the model. The satisfactory agreement
between experimental and numerical data gives support to the assumption that the model is suitable
for 2D tank sloshing problems. The numerical results of the 2D model and the 3D model were
compared with the experimental results, suggesting an insignificant 3D effect associated with the cases
concerned in this paper. Considering the extremely longer Central Processing Unit (CPU) time by the
3D model, the 2D model is preferable and is used in the systematic numerical investigations. A large
number of numerical simulations were performed to explore the influence of frequency, amplitude,
and the filling level on sloshing: (1) the research on the influence of amplitude indicated that the impact
pressure increases as the amplitude grows, and the increase is basically linear in the non-resonance
range. Moreover, the change in amplitude affects sloshing more greatly near the resonance frequency.
However, under the excitation of resonance frequency, wave breaking may challenge such a principle
because of nonlinear effect; (2) the influence of water depth on pressure-frequency response also has
been studied, the process of the transition from a ‘soft-spring’ response to a ‘hard-spring’ response
is observed following the change of the filling level, the ascending trend of the pressures before
the maximum response frequency becomes shorter, and the descending process after that becomes
longer. The maximum response frequency decreases from 1.18 ω1 to 0.92 ω1 moving away from
the first-mode natural frequency ω1 calculated by potential theory; (3) The main reason for this
difference should be the nonlinear effect of wave breaking. The nonlinear effect of wave breaking was
studied by a pressure-frequency response curve, the mean squared error-frequency response curve,
the pressure-time history curve, and the spectral analysis at the maximum response frequency in the
case of breaking and non-breaking. The result show that when at the same depth but without wave
breaking, the phenomenon of resonant hysteresis disappears, and the resonance sloshing at a low
filling level is more nonlinear than the resonance sloshing at a high filling level; (4) The pressure of
the A = 0.5 mm case has been expanded 14 times to compare with the pressure of the A = 7 mm case
to investigate how the sloshing state will be if wave cannot break. The result shows that the period
of the shallow liquid sloshing decreases with wave breaking, therefore, the maximum response can
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be achieved at an external excitation frequency higher than the natural frequency. Combined with
the fluid phenomenon in Figures 20 and 21, the reasons may be the liquid climbing up the wall falls
vertically and hits the free surface; this force accelerates the velocity of the sloshing wave. In the
condition of deep water, the period of the liquid sloshing goes up with wave breaking, so the system
resonance can be excited at an external excitation frequency lower than the natural frequency. One
reasonable reason is that there is an obvious roof slamming and aerification which may dissipate
energy during each slamming. Besides, a large amount of liquid splashing will reduce the depth of the
water, which will lead to lower wave speed and a longer period of deepwater sloshing.

Some reasonable reasons have been raised combined with the fluid phenomenon in Figures 20
and 21: (1) the drop of the fluid after the hydraulic jump accelerates the velocity of the sloshing wave;
(2) the roof slamming and aerification may dissipate energy during each impact; (3) a large amount of
liquid splashing will reduce the depth of water, which will lead to a lower wave speed and a longer
period of deepwater sloshing.
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