

Running DualSPHysics on Linux

Research Directors:

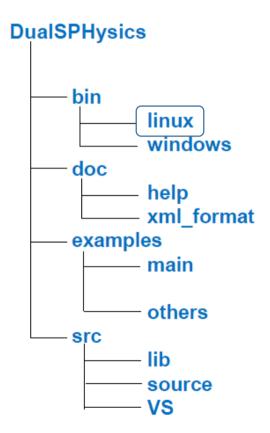
Professor Vincent Demers

Professor Louis Dufresne

Presented by: *Mohammad Meiabadi*

Montréal, December 16 2020 8th follow up meeting

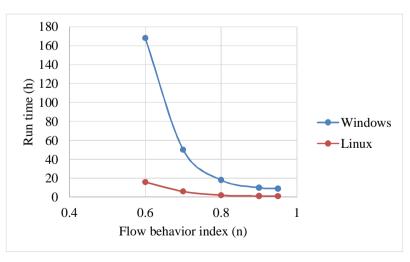
Outline


- How to Run DualSPHysics on Linux
- Permissions to Run DualSPHysics
- Mathematical Solution of Ratio Equation
- Simulation of Poiseuille Flow of Power Law Fluid by Linux

Permissions to Run DualSPHysics

To run DualSPHysics on Linux we need to allow permissions:

- 1. chpermissions.sh (once)
- 2. DualSPHysics5.0_NNewtonianCPU_linux64 (once)
- 3. GenCase_linux64 (once)
- 4. PartVTKOut_linux64 (once)5. MeasureTool_linux64 (once)
- 6. xCasePoiseuilleNNlinux64CPU.sh (each case)


Steps to Run DualSPHysics on tftcfd-01 Station

- 1. Transfer case files from Windows to Linux
- 2. Set execute permission on xCasePoiseuilleNNlinux64CPU.sh
- 3. Run the sh script by Linux
- 4. Transfer CasePoiseuilleNN_out from Linux to Windows
- 5. Analysis of results by ParaView in Windows

Comparison Linux and Windows

	Windows	Linux								
Flow behaviour index	n=0.95		n= 0.9		n= 0.8		n=0.7		n=0.6	
Flow consistency index	m= 0.001									
ΔP/L	10		10		10		10		10	
Time of simulation(s)	1		1		1		1		1	
IDP /Thickness	0.02		0.02		0.02		0.02		0.02	
Number of particles	2550		2550		2550		2550		2550	
Run time (h)	9	1	10	1.2	18	2	50	6	1week	16

Mathematical Solution of Ratio Equation

The shear rate is

$$\dot{\gamma}(y) = \frac{-dv_z}{dy}$$

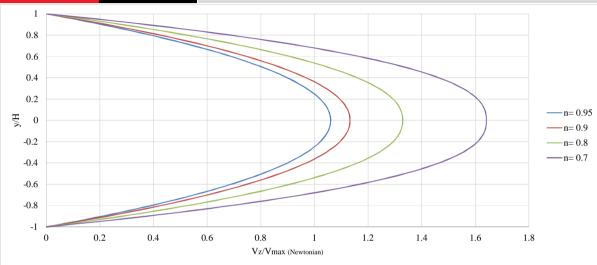
$$\dot{\gamma}(y) = \frac{-dv_z}{dy}$$
, for Power law fluid $\dot{\gamma}(y) = \left[\frac{-\Delta p}{Lm}\right]^{\frac{1}{n}} \left(y^{\frac{1}{n}}\right)$

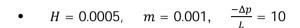
The Ratio of actual viscosity over Newtonian viscosity is

$$Ratio = \frac{\eta}{m} = \frac{m\dot{\gamma}^{n-1}}{m} = \dot{\gamma}^{n-1} = \left[\frac{-\Delta p}{Lm}\right]^{\frac{n-1}{n}} \left(y^{\frac{n-1}{n}}\right)$$

$$1 = \left[\frac{-\Delta p}{Lm}\right]^{\frac{n-1}{n}} \left(y^{\frac{n-1}{n}}\right)$$

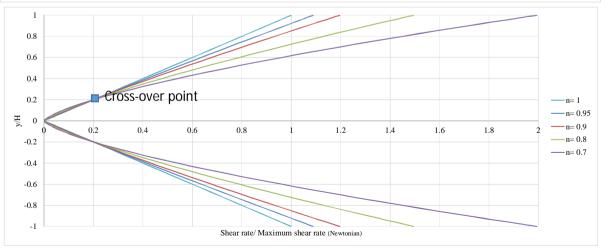
For the following parameters:


$$m = 0.001, \quad \frac{-\Delta p}{L} = 10, \quad H = 0.0005$$


Having solved the Ratio equation we reach to the height of cross-over point:

$$y = 0.00001,$$
 $\frac{y}{H} = 0.2$

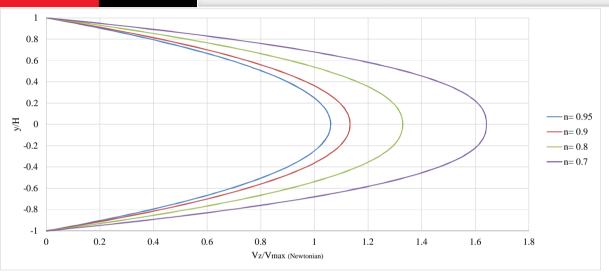
Velocity and Shear Rate Profiles

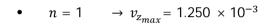

•
$$n = 1$$
 $\rightarrow v_{z_{max}} = 1.250 \times 10^{-3}$

•
$$n = 0.95 \rightarrow v_{z_{max}} = 1.325 \times 10^{-3}$$

•
$$n = 0.9 \rightarrow v_{z_{max}} = 1.416 \times 10^{-3}$$

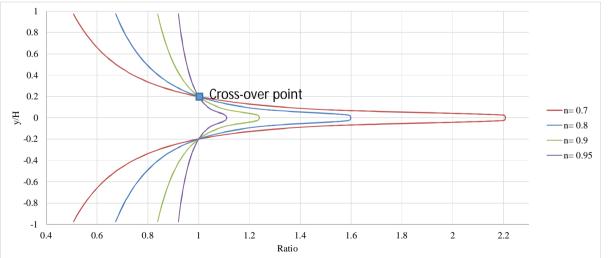
•
$$n = 0.8 \rightarrow v_{z_{max}} = 1.661 \times 10^{-3}$$


$$\bullet \qquad n = 0.7 \quad \rightarrow v_{z_{max}} = 2.051 \, \times 10^{-3}$$



 $0 > \frac{y}{H} > 0.2 \rightarrow$ Shear rate of Newtonian fluid > Shear rate of non - Newtonian 0.2 < y/H < 1 \rightarrow Shear rate of Newtonian fluid < Shear rate of non - Newtonian

Velocity and Ratio Profiles



•
$$n = 0.95 \rightarrow v_{z_{max}} = 1.325 \times 10^{-3}$$

•
$$n = 0.9 \rightarrow v_{z_{max}} = 1.416 \times 10^{-3}$$

$$\bullet \qquad n = 0.8 \quad \rightarrow \, v_{z_{max}} = 1.661 \, \times 10^{-3}$$

•
$$n = 0.7 \rightarrow v_{z_{max}} = 2.051 \times 10^{-3}$$

 $0 > y/H > 0.2 \rightarrow Viscosity$ of Newtonian fluid < Viscosity of non - Newtonian

 $0.2 < y/H < 1 \rightarrow Viscosity$ of Newtonian fluid > Viscosity of non - Newtonian